
Reprinted from

10.5

FISH-FH 69-0628

Received 12 March 1968

Effect of Pressure on Ultrasonic Absorption, Multistate Dissociation, and Chemical Equilibrium in MnSO₄ Solutions*

F. H. FISHER AND W. M. WRIGHT

University of California, San Diego, Marine Physical Laboratory of the Scripps Institution of Oceanography, San Diego, California 92152

Measurements were made on the effect of pressure on ultrasonic absorption in a 0.5M aqueous solution of manganese sulfate at 25°C. A cylindrical resonant cavity was used for obtaining absorption in the frequency regions of 300 and 500 kHz, at pressures up to 20 000 psi. Results are similar to those obtained for MgSO₄, in that absorption decreases by a factor of about 3 for a pressure increase of 15 000 psi. Independent conductivity data show nearly the same behavior for MnSO₄ as for MgSO₄ solutions, namely, an increase of only about 14% in the concentration of dissociated ions for the same pressure increase. These results for MnSO₄ appear to be inconsistent with the model used by Atkinson and Kor to analyze their data. The large effect of pressure on ultrasonic absorption is similar to that observed by Carnevale for 0.1M MnSO₄ at 60°C from 9 to 75 MHz.

INTRODUCTION

The extensive acoustic absorption measurements of Kurtze and Tamm¹ in aqueous solutions of divalent sulfates demonstrated that these electrolytes exhibited pronounced acoustic relaxation frequencies. The highfrequency relaxation was nearly the same ($\nu_I \cong 200$ MHz) for all the salts but the low relaxation frequency varied over a wide range as the cation varied from Be through Ni, Mg, Co, and $Mn(\nu_{III}=10^3-5\times10^6 \text{ Hz})$. The acoustic properties exhibited by these solutions have been explained by Eigen and Tamm² in terms of a multistate dissociation theory, in which a series of pressure-dependent chemical reactions are coupled together. This theory postulates three forms for an electrically neutral ion pair, in which the successive stepwise addition of water molecules between the ions constitutes the reactions giving rise to the observed acoustic absorption; ultimately, the ion pair dissociates into electrically conducting hydrated ions.

The multistate dissociation theory was developed to account for acoustic absorption at atmospheric pressure, in particular, for solutions of MgSO₄, the salt that is

574 Volume 46 Number 3 (Part 2) 1969

responsible for the high sound absorption in sea water below $\sim 100 \text{ kHz.}^3$ This theory also accounts for the contrasting pressure dependence observed for acoustic absorption and electrical conductivity of MgSO₄ solutions⁴; a pressure increase of 15 000 psi produces a decrease in sound absorption of about 67%, whereas only a 10% increase is observed in electrical conductance.⁵

Because of the large difference (~130 kHz vs ~5 MHz) in the acoustic relaxation frequency $\nu_{\rm HI}$, observed at atmospheric pressure for MgSO₄ and MnSO₄ solutions, a set of experiments was performed in 1958 at the Acoustic Research Laboratory at Harvard in order to compare the effect of pressure on ultrasonic absorption for aqueous solutions of these two salts. Because of the large difference in the relaxation frequency, $\nu_{\rm HI}$ for MgSO₄ and MnSO₄, we wished to determine if this difference might have any relation to the pressure dependence of sound absorption.

In 1958, Carnevale⁶ reported pressure data on ultrasonic absorption in aqueous $MnSO_4$ solutions at 60°

⁴ F. H. Fisher, J. Acoust. Soc. Amer. 38, 805-812 (1965).

⁶ E. H. Carnevale, "Effect of Pressure on Ultrasonic Relaxation in Electrolytes," PhD thesis, Catholic University of America Press (1958).

^{*} Contribution of Scripps Inst. of Oceanogr., new series.

[†] Present address: Phys. Dep., Kalamazoo Coll., Kalamazoo, Mich. 49001.

¹ G. Kurtze and K. Tamm, Acustica 3, 33-48 (1953).

² M. Eigen and K. Tamm, Z. Elektrochem. 66, 93-121 (1962).

^aO. B. Wilson and R. W. Leonard, J. Acoust. Soc. Amer. 26, 223–226 (1954).

⁵ F. H. Fisher, J. Phys. Chem. 66, 1607-1611 (1962).

TABLE I. Summary of present absorption data of 0.5M MnSO4 at 25°C and atmospheric pressure.^a

	327 kHz	500 kHz
(dB/sec)	2269±231	3991±263
(cm)	0.471	0.308
(Np/cm)	1.696×10 ⁻³	2.983×10-3
(Np)	0.799×10 ⁻³	0.919×10-3
(Np cm ⁻¹ ·sec ⁻²)	(1590 ± 159)	1190±79
(m ³)	531 ± 53	610±40
	(dB/sec) (cm) (Np/cm) (Np) (Np cm ⁻¹ ·sec ⁻²)	(dB/sec) 2269±231 (cm) 0.471 (Np/cm) 1.696×10 ⁻³ (Np) 0.799×10 ⁻³ (Np cm ⁻¹ ·sec ⁻²) (1590±159)

" $\alpha' = 8.686\alpha c, c = 154\,000 \text{ cm/sec}, Q\lambda = 2\alpha\lambda/NA$, where N is concentration in moles/cubic meter and A is Avogadro's number.

over a frequency range from 9.0 to 75 MHz and up to pressures of about 60 000 psi; for a pressure increase of \sim 15 000 psi, he observed a large decrease in absorption similar to that observed for MgSO₄ at 25° and a slight increase, about 15%, in relaxation frequency. However, because of the large temperature difference, it was not possible to compare the results between MgSO₄ and MnSO₄ solutions.

At the time this work was performed, no quantitative model had been proposed for MnSO₄, and the multistate dissociation theory had not yet appeared in detail, although its basic features had been outlined.⁷ The results for the pressure dependence of sound absorption in MnSO₄ solutions were similar to but less accurate than those obtained in MgSO₄ solutions. Results for the pressure dependence of electrical conductivity for MnSO₄ solutions⁸ were also nearly the same as for MgSO₄.⁵ The recent work of Atkinson and Kor⁹ on MnSO₄, as well as the work of Bechtler at Tamm's laboratory, stimulated the reexamination of these 10-year-old data.

The present experimental results are discussed in relation to a critical test of a multistate dissociation model proposed by Atkinson and Kor⁹ for MnSO₄ solutions at 25°.

I. EXPERIMENTAL MEASUREMENTS AND RESULTS

Measurements of ultrasonic absorption were made in two frequency regions, using the resonant-cavity technique described in relation to the MgSO₄ work.⁴ The results were converted to single-frequency data as a function of pressure¹⁰ by means of Eq. 1,

$$2\alpha = \beta_{\rm III} \rho c [2\pi \nu_{\rm III} f^2 / (f^2 + \nu_{\rm III}^2)], \qquad (1)$$

where α is absorption in nepers/centimeter; β_{III} , the chemical compressibility in square centimeters/dyne; ρ , the density in grams/cubic centimeter; c, the sound speed in centimeters/second; f, the acoustic frequency

⁷ M. Eigen, Discussions Faraday Soc. 24, 25-36 (1957).

⁸ F. H. Fisher and D. F. Davis, J. Phys. Chem. **69**, 2595–2598 (1965).

⁹G. Atkinson and S. K. Kor, J. Phys. Chem. 71, 673-677 (1967).

¹⁰ The resonant mode frequency varies with pressure, owing to changes in sound velocity and cavity dimensions.

CONT

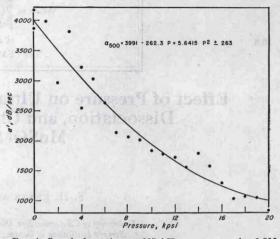


FIG. 1. Sound absorption at 327 kHz vs pressure for 0.5M MnSO₄ aqueous solution at 25°C.

in hertz; and ν_{III} , the relaxation frequency. At a given pressure ν_{III} , β_{III} , ρ , and c are constant, so

$$\frac{\alpha_1}{\alpha_2} = \left(\frac{f_1}{f_2}\right)^2 \left(\frac{f_2^2 + \nu_{\text{III}}^2}{f_1^2 + \nu_{\text{III}}^2}\right).$$
 (2)

If ν_{III} is known, then absorption at frequency f_1 can be converted to that at f_2 with this equation. Since data in this work were obtained at frequencies well below the low relaxation frequency reported in the literature, it makes little difference for this conversion which value of ν_{III} is used. Because of the negligible pressure dependence observed for ν_{III} in MgSO₄ solutions at this concentration,⁴ ν_{III} was assumed to be pressure independent for MnSO₄. This assumption for 25° is not in substantial disagreement with Carnevale's work, in which he calculated a slight change of 15% for a pressure increase of about 15 000 psi.

The absorption results, reduced to fixed frequency through use of Eq. 2, are shown in Figs. 1 and 2. To facilitate comparison of these results with those of other

FIG. 2. Sound absorption at 500 kHz vs pressure for 0.5M aqueous solution at 25°C.

The Journal of the Acoustical Society of America 575

FISHER AND WRIGHT

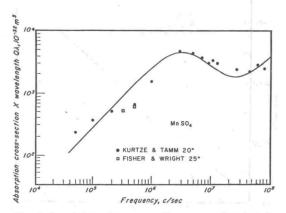


FIG. 3. Sound-absorption cross section per wavelength vs frequency for MnSO₄ solutions.

investigators at atmospheric pressure, the data in Table I are expressed in the different units that have been used by various investigators. The pressure dependence of sound absorption and sound speed are indicated in Table II.

The results obtained by Kurtze and Tamm¹ at 20°C are shown in Fig. 3 along with our results at 25°C. The curve is that shown in the paper by Kurtze and Tamm, which overlooks the strong indication of a relaxation in the low-frequency region. The standard deviation of our data is low enough to suggest the existence of another relaxation; however, Bechtler and Tamm11 have pointed out that, when they interpolate Bechtler's more recent 0.5M MnSO₄ absorption data to 25°C, there is little evidence to support a low-frequency relaxation below 5 MHz. Because Cartensen's¹² data do not extend to the low frequencies used by Kurtze and Tamm, they are not reproduced here. The sound speed at atmospheric pressure was obtained by matching resonant mode patterns. Comparison of atmospheric-pressure measurements of sound speed are shown in Fig. 4. Bechtler's¹¹ data appear to be the most reliable. However, dispersion of about 2 m/sec exists between 10-MHz and 500-kHz data for 0.5 molar MnSO₄. This difference would mean that Bechtler's data and ours would agree to within 1 m/sec.

Results for chemical compressibility are shown in Table III, in which density data for MgSO₄ solutions are used in order to make the calculation according to Eq. 1. The value of β_{III} is sensitive to the value for ν_{III} and results are shown for 25°, where ν_{III} is ~3.5 MHz, according to Atkinson and Kor,13,14 and ~5 MHz, according/to Jackopin and Yeager¹⁵ and Smithson and

 ¹¹ K. Tamm (private communication).
¹² E. L. Carstensen, J. Acoust. Soc. Amer. 26, 862-864 (1954).
¹³ G. Atkinson and S. K. Kor, J. Phys. Chem. 69, 128-133 (1965). ¹⁴G. Atkinson and S. K. Kor, J. Phys. Chem. 70, 314

(1966). 15 L. G. Jackopin and E. Yeager, J. Phys. Chem. 70, 313 (1966).

Number 3 (Part 2) 1969 576 Volume 46

TABLE II. Sound absorption and velocity as a function of pressure for 0.5*M* MnSO₄ at 25°C.

P (kpsi)	$\frac{\alpha_{327}}{\text{Np/cm}}$	α_{500} Np/cm	$(g \operatorname{cm}^{\rho c} \operatorname{sec}^{-1})$	V (m/sec)
0.015	1.70×10 ⁻³	2.98×10 ⁻³	1.637×10 ⁵	1540
5	1.09	2.03	1.725	1599
10	0.72	1.34	1.810	1657
15	0.42	0.89	1.894	1714

Litovitz.¹⁶ According to Tamm,¹⁷ the value of ν_{III} at 25° may actually be higher than 5 MHz for a 0.5Msolution. However, the conclusions herein would not be altered significantly by a slight adjustment of this lowest relaxation frequency.

II. DISCUSSION

Atkinson and Kor,9,13 in their studies of ultrasonic absorption in aqueous solutions of MnSO4 at atmospheric pressure, have interpreted their results in terms of the multistate dissociation theory of Eigen and Tamm.² The multistate reaction equation is shown below:

$$\begin{split} \mathbf{Mn}^{V_1}_{m_1} & \overset{V_2}{\underset{k_{12}}{\longrightarrow}} \mathbf{MnO}_{\mathbf{H}^{\mathbf{H}}\mathbf{O}_{\mathbf{H}}}^{V_2} \mathbf{HSO}_4 \\ & \overset{V_2}{\underset{m_2}{\longrightarrow}} \mathbf{MnO}_{\mathbf{H}^{\mathbf{H}}\mathbf{SO}_4}^{V_3} \overset{V_3}{\underset{m_3}{\longrightarrow}} \mathbf{MnSO}_4 \overset{k_{34}}{\underset{m_4}{\longrightarrow}} \overset{V_4}{\underset{m_4}{\longrightarrow}} \mathbf{MnSO}_4. \end{split}$$

Here, the V_i are partial molal volumes; k_{ij} , reaction rates; and m_i , the concentrations of the various states *i*. It is seen that the dissociated ions in electrically conducting State 1 associate, forming various ion pairs in which successive water molećules are removed from between the ions until a contact ion pair is formed. The ultrasonic relaxation spectra exhibited by MnSO4 solutions can be related to the various reactions in the multistate model.

From the values assigned by Atkinson and Kor to the reaction rates and equilibrium constants, which are

TABLE III. Chemical compressibility β_{III} as a function of pressure for 0.5M MnSO4 and 0.5M MgSO4 at 25°C.

D		β _{III} ×10 ¹⁴ Μι	(cm²/dyn) nSO4		
(kpsi)	Α	в	С	D	MgSO ₄
0.015	11.7	8.3	15.5	10.9	4.4
5.0	7.6	5.4	9.4	6.6	3.0
10.0	4.8	3.4	6.0	4.2	2.1
15.0	3.0	2.1	3.3	2.4	1.6

^a A. f = 500 kHz, $\nu_{\text{HII}} = 5.0 \text{ MHz}$. B. f = 500 kHz, $\nu_{\text{HII}} = 3.5 \text{ MHz}$. C. f = 327 kHz, $\nu_{\text{HII}} = 5.0 \text{ MHz}$. D. f = 327 kHz, $\nu_{\text{HII}} = 3.5 \text{ MHz}$.

¹⁶ J. R. Smithson and T. A. Litovitz, J. Acoust. Soc. Amer. 28, 462-468 (1956).

17 K. Tamm (private communication).

ULTRASONIC ABSORPTION IN MnSO, SOLUTIONS

TABLE IV. Rate and equilibrium constants for aqueous MnSO₄ at 25°C (Atkinson and Kor).

$K_m = 1/139 = 0.00720$		
$k_{12} = 4.2 \times 10^{10} \text{ C}^{-1} \text{ sec}^{-1}$		
$k_{21} = 8.0 \times 10^8 \text{ sec}^{-1}$		
$K_{12} = 0.0192$ mole/liter		
$k_{23} = 6.9 \times 10^7 \text{ sec}^{-1}$	1.50	
$k_{32} = 1.9 \times 10^8 \text{ sec}^{-1}$		
$K_{23} = m_2/m_3 = 2.8$		
$k_{34} = 4.8 \times 10^7 \text{ sec}^{-1}$		12 21
$k_{43} = 1.4 \times 10^7 \text{ sec}^{-1}$		
$K_{34} = m_3/m_4 = 0.29$		

shown in Table IV, it is possible to calculate the concentrations of the various states. The equation for the over-all dissociation constant K_m is

$$K_m = \frac{m\gamma_{\pm}^2}{1-\theta} = \frac{m\theta^2 f_{\pm}^2}{1-\theta} = \frac{m_1^2 \pi^f}{m_2 + m_3 + m_4},$$
 (3)

where θ is the degree of dissociation and the m_i , the concentration in molal units. The method of calculation is identical to that used for MgSO₄ solutions.⁴ For a 0.5 M^{18} solution, the activity coefficient $\gamma_{\pm}=\theta f_{\pm}$ = 0.0640 (Ref. 19), π^{j} is the activity-coefficient product and is equal to f_{\pm}^{2} when the activity coefficient of an uncharged ion pair is taken to be unity. The results are shown in Table V and are compared with those calculated earlier⁴ for MgSO₄ on the basis of parameter values assigned by Eigen and Tamm² for MnSO₄; it is seen that the concentration of the contact ion pair is about 14%, over 20 times greater than the corresponding value for MgSO₄.

In the above reaction scheme, the chemical compressibility associated with the reactions between States 3 and 4 is designed as β_{III} and is related to the volume changes, concentration, and reaction rates as shown below²:

 $\beta_{\rm III} = m \Gamma_{\rm III}^* (\Delta V_{\rm III})^2 / RT, \qquad (4)$

$$\Delta V_{\rm III} = V_4 - V_3 + k_{32}/(k_{23}' + k_{32}) \\ \times [(V_3 - V_2) + [k_{21}/(k_{12}' + k_{21})](V_2 - V_1)]; \quad (5)$$

$$k_{23}' = [k_{12}'/(k_{12}'+k_{21})]k_{23}; \tag{6}$$

$$k_{12}' = k_{12} \theta m \pi^{f} [2 + (\partial \ln \pi^{f} / \partial \ln \theta)_{c}]; \qquad (7)$$

and

where

 $m\Gamma_{III}^* = (m_1' + m_2 + m_3)m_4/(m_1' + m_2 + m_3 + m_4).$ (8)

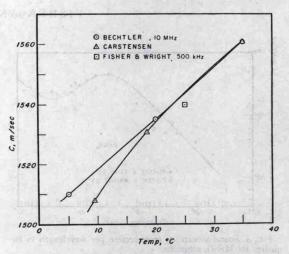


FIG. 4. Sound velocity vs temperature for 0.5M MnSO₄ solutions.

We let $m_1 \cong c_1'$, where $1/c_1' = 2/c_1 + (\partial \ln \pi^J / \partial c_1)_c$; c denotes molar concentration. The rate constant k_{12}^0 is the diffusion-controlled reaction rate for recombination of ions at infinite dilution.

To relate the results of Atkinson and Kor to the observed effect of pressure on sound absorption, let us examine in detail the parameters they assign to MnSO₄. In particular, to evaluate ΔV_{111} in Eq. 4, we need to know k_{12}' in addition to k_{32} and k_{21} in Table IV. The relevant equations are Eq. 9 below,

$$2\pi\nu_{\rm III} = k_{43} + [k_{23}'/(k_{23}'+k_{32})]k_{34} = k_{43} + k_{34}', \quad (9)$$

and Eq. 7. Using their values of the observed relaxation frequency, we arrive at the results shown in Table VI.

The chemical compressibility is related to the maximum value of $(\alpha\lambda)$ as follows (i.e., when $f = \nu_{\text{III}}$ in Eq. 1):

$$\beta_{\rm III} = 2(\alpha\lambda)_{\rm IIImax}/\pi\rho c^2. \tag{10}$$

Using the value of $(\alpha\lambda)_{IIImax} = 1.8 \times 10^{-3}$ given by Atkinson and Kor⁹ for 0.1*M* MnSO₄ at 25°C, and assuming $c = 1.51 \times 10^5$ cm/sec, we find $\beta_{III} \cong 2.85 \times 10^{-14}$ cm²/dyn. Therefore, since $m\Gamma_{III} \approx 0.06 \times 10^{-3}$ moles/cm³ (Ref. 20) $(\Delta V_{III})^2 \cong 50$, and $\Delta V_{III} \cong 7$ cm³/mole.

For MgSO₄, it was shown that β_{III} decreases with pressure because of a decrease in concentration of m_4 owing to the effect of pressure on the equilibrium constants K_{ij} , as given by the van't Hoff equation,

$$(\partial \ln K_{ij}/\partial p) = -\Delta V_{ij}/RT.$$
(11)

For MgSO₄, $\Delta V_{III} \cong 19$ cm³/mole, and it was the large

The Journal of the Acoustical Society of America 577

¹⁸ The difference between molar and molal is neglected. ¹⁹ R. A. Robinson and R. H. Stokes, *Electrolyte Solutions* (Butterworths Scientific Publications Ltd., London, 1959), 2nd ed., p. 502.

²⁰ It is important to note that the units of concentration have to be moles/cubic centimeter in order to calculate compressibility correctly.

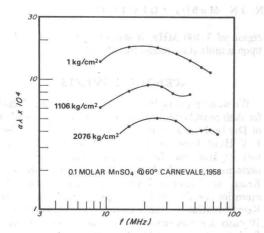


FIG. 5. Sound absorption per wavelength vs pressure for 0.1M MnSO₄ aqueous solution at 60°C.

volume change, $\Delta V_{23} = 18 \text{ cm}^3/\text{mole}$, assigned by Eigen and Tamm to the transition between States 2 and 3, that produced the principal pressure effect on sound absorption.

According to the value of $\Delta V_{\rm III}$, obtained for MnSO₄ from the Atkinson and Kor parameters, the maximum decrease in sound absorption at 15 000 psi can only be around 20% instead of the 70% observed—according to Atkinson and Kor,¹⁴ ΔV_{12} \simeq 5 cm³/mole. Therefore, from the equation for $\Delta V_{\rm III}$, we see that the values of ΔV_{34} and ΔV_{23} cannot be great enough to account for the observed dependence of acoustic absorption unless they are of opposite sign. If they are, then the implication would be that the absorption associated with the middle relaxation frequency must increase with pressure because the concentration of State 3 would increase.

Now, according to Carnevale's⁶ analysis of his absorption data at 60° from 9 to 75 MHz, there does not appear to be a significant increase in a middle peak as pressure increases. He treats the data in terms of two relaxation frequencies, the upper one being diffusion controlled. From his data, he calculates that β_{III} decreases from 4.55×10^{-14} to 1.79×10^{-14} cm²/dyn for a pressure increase of about 15 000 psi, a decrease very similar to that reported here. However, as we reexamine Carnevale's data, a plot of absorption per wavelength recalculated from his raw data and cor-

TABLE V. Concentrations of states in 0.5M MnSO₄ compared to those in 0.5M MgSO₄.

State	MnSO ₄	MgSO ₄
m_1	0.36 moles/liter	0.44 moles/liter
ma	0.55	0.027
111-2	0.020	0.027
1124	0.068	0.003

578	Volume 46	Number 3 (Part	2)	1969
3/0	ADIRING MO	ITUMPEL & TUM		1000

TABLE VI. Modified reaction rates and ratios for $MnSO_4$ at 25°C predicted by Atkinson and Kor.

C (moles/liter)	0.01	0.1
VIII (MHz)	2.7	3.3
k12'	$0.22 \ k_{21}$	0.81 k ₂₁
k23'	$0.066 k_{32}$	$0.16 k_{33}$
$k_{32}/(k_{23}'+k_{32})$	0.95	0.86
$k_{21}/(k_{12}'+k_{21})$	0.82	0.55

rected only for water absorption is most interesting, as we see in Fig. 5; the data at 15 720 and 28 800 psi appear to indicate the existence of a third middle relaxation frequency. These limited data indicate the possibility of an initial increase, with pressure, of a middle $(\alpha\lambda)_{II}$ peak; further increase of pressure appears to diminish this peak. Additional data with more extensive frequency coverage and at closer pressure intervals appear to be most desirable and useful, preferably at 25°C.

The concentration of State 4 deduced by Atkinson and Kor appears to be confirmed by NMR experimental work,²¹ in which it was concluded that two water molecules are replaced upon formation of the contact ion pair. Furthermore, in the work at Heidelberg²² it has been postulated that a reversal of sign does take place in the volume changes but not in a manner that is consistent with Atkinson and Kor.

A final quantitative model for MnSO₄, one which different investigators can agree upon, may be some time in coming. Tamm²² has presented new quantitative values of multistate parameters for MnSO₄ and MgSO₄ solutions that indicate qualitative agreement with the pressure dependence of the ultrasonic absorption reported here. It should be noted that the newer MgSO₄ values differ considerably from those in the paper by Eigen and Tamm,² and the MnSO₄ values differ from those of Atkinson and Kor.^{9,13} The criticism in this paper of the model by Atkinson and Kor—namely, its failure to account for the pressure dependence of ultrasonic absorption—is only one aspect of the problem of arriving at an undisputed description of multistate dissociation for MnSO₄.

III. SUMMARY

The over-all features of the pressure dependence of acoustic absorption for $MnSO_4$ resemble those of $MgSO_4$ very closely. This also applies to the pressure dependence of electrical conductance in $MnSO_4$ solutions.⁸ Despite the differences in concentration of the contact ion pair (State 4) as treated here and the large

²² K. Tamm "Accoustical Measurements of Chemical Relaxation in Electrolytical Solutions," paper delivered at Int. Congr. Acoust., 6th, Tokyo, Japan, 21–28 Aug. 1968.

²¹ L. S. Frankel, T. R. Stengle, and C. H. Langford, J. Inorg. Nucl. Chem. **29**, 243-246 (1967).

difference in ν_{III} , there are no significant differences in the pressure dependence of the $(\alpha\lambda)_{III}$ absorption peak. However, Carnevale's work indicates that the $(\alpha\lambda)_{II}$ peak may prove to be significant in evaluating differences in acoustic absorption as a function of pressure.

The similarity of these pressure-dependent properties of MnSO₄ solutions must be accounted for by multistate dissociation models. In this paper, we conclude that parameters assigned to the model by Atkinson and Kor^{9,13} cannot account for the observed pressure dependence of ultrasonic absorption unless there is a reversal of sign for ΔV_{23} and ΔV_{34} . Tamm²² has indicated that a model for MnSO₄, based on ultrasonic work by Bechtler in his laboratory (the parameters of which differ from those of Atkinson and Kor), can account qualitatively for the observed pressure dependence. By measuring the pressure dependence of ultrasonic absorption in MnSO₄ solutions at 25°C, in the frequency

The concentration of States' in flued by Atkinson and are concentration of States' in flued by Atkinson work. In which is we conclude that two were ministics are replaced to an obtain that two were independent of particles are as a fluid benefit, this bene contributed, particles easily of provider that provin the wolf of concers had by a months that provin the wolf of the particles and fluid concers had for

A dual quasitative ander in "dot"), one which different investigators can represente on questitative norm a manner. Turne" insert strotes an questitative values of moderate futurinates for 51x35, and 31x50, and 10x on protect of martinity agreement with the mercel time. A smaller of martinity agreement with the cancel time. A smaller of a start that the newer MgSD, and 20x of the start of the the newer MgSD, and the offer transforming that the the newer MgSD, then of the transforming from these in the gaper by the offer transforming to the MrCA, values differ from these of the model by a function of the startes in the paper of the model by a function of the protection of faire of the model by a function of the problem of the startes of the model by a function of the problem of the startes of the model by a function of the problem of the startes of the model by a function of the problem of the startes of the model by a function of the problem of the startes of the model by a function of the problem of the startes of the model of the problem of the startes of the startes of the function of the startes of the startes of the startes of the model of the startes of the problem of the startes of the function of the startes of the startes of the startes of the startes of the function of the startes of the startes

VIENNARRY DI

The overall converse the presence dependence of nonvoir absorptions for Markh, regulate Shore re-Mark N, very closely. This also approve to the presence dependence of electrical conductance in Markh, solutions, Coglite the differences for concentration of the connect on part (Note S) as trends here and the large

⁴ L. S. Frankel, T. E. Stands, and C. H. Langsond, J. Loog. Nucl. Chem. 49 (14) (16) (207).

N. Land, Construct M. Sumpression Character Researces in Lindicar Societies, provident of Int. Long. A contract. Co. 79, 410-51, 41–51, Aug. 1534. region of 5-100 MHz, it should be possible to decide upon a multistate model for MnSO₄.

ACKNOWLEDGMENTS

We wish to thank Professor Tamm and Dr. Bechtler for their most helpful comments and advance knowledge of Dr. Bechtler's results. We are grateful to Professor F. V. Hunt, Director of the Acoustics Research Laboratory at Harvard University, for the opportunity to perform this work. We wish to thank Professor P. Kruus of Carleton University, Ottawa, for calling attention to the nuclear magnetic resonance work.²¹ Reexamination of the experimental work performed 10 years ago was stimulated by the current research of Professor Tamm and Dr. Bechtler, Professor Atkinson and Dr. Kor, and work at this Laboratory supported by National Science Foundation grants.

saturate change, is a = 18 cm² built a superior or high and Thanks to the transition for a set finites 2 and 3, it at produced, the principal presence effect on annual absention.

Act on the Arkinster and Arm, antiseted the MaSU, from the Arkinster and Arm preparety, the maximum data are to would also of the Wey unstructure constraing to arroad 20% instead of the Wey unstructure constraing to them the equation for Arm, we see that are values of a read of the constrained of the two of the theter are also also also a transfer areas and the transfer otherwed the constrained of the two of the theter areas and the equation for Arm, we see that are values of a read of the constrained of the the otherwed the constrained article and the the areas of the constrained areas and the the areas of the constrained article and the the areas of the constrained article and the the areas of the constrained article and the the areas of the constrained areas and the the areas of the transfer areas are the the the transfer to the theory of the second of the transfer the areas are the transfer and the transfer areas from the the transfer areas and much the controllet the transfer are uppet end the transfer areas from the data to the the transfer and the transfer areas are the transfer and the transfer and the transfer areas the transfer and the transfer areas from the data to the the the data to the areas areas transfer are uppet end the areas the areas areas transfer areas and the transfer are the transfer areas are the transfer areas the controllet the transfer areas the transfer areas the areas areas transfer areas are the transfer areas the areas areas transfer areas areas areas areas areas and areas areas transfer areas areas areas areas areas are areas areas the transfer areas areas areas areas areas are areas areas transfer areas ar

"Estua V. Grazimations of states in 6.577 and 50 compared to those in 0.540 March.

	10
4.4	146
0,020	OFFE

STR Volume 46 Manual 3 (Post-2) -150

The Journal of the Acoustical Society of America 579